On Least-Squares Variational Principles for the Discretization of Optimization and Control Problems
نویسندگان
چکیده
منابع مشابه
On Least-squares Variational Principles for the Discretization of Optimization and Control Problems
The approximate solution of optimization and control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on the application of the Lagrange multiplier rule followed by discretization through, e.g., a Galerkin finite element method. As an alternative, we show how least-squares finite element metho...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملvariational discretization and mixed methods for semilinear parabolic optimal control problems with integral constraint
the aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. the state and co-state are approximated by the lowest order raviart-thomas mixed finite element spaces and the control is not discreted. optimal error estimates in l2 are established for the state...
متن کاملLeast-squares finite element methods for optimization and control problems for the Stokes equations
The approximate solution of optimization and control problems for systems governed by the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A di...
متن کاملDiscretization-Optimization Methods for Optimal Control Problems
We consider an optimal control problem described by nonlinear ordinary differential equations, with control and state constraints. Since this problem may have no classical solutions, it is also formulated in relaxed form. The classical control problem is then discretized by using the implicit midpoint scheme for state approximation, while the controls are approximated by piecewise constant clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods and Applications of Analysis
سال: 2005
ISSN: 1073-2772,1945-0001
DOI: 10.4310/maa.2005.v12.n4.a3